Benchmarking
Comprehensive benchmarking suite for webMCP performance analysis. Compare models, measure efficiency, and optimize your implementations.
Benchmarking Capabilities
Comprehensive performance analysis across multiple dimensions
Performance Benchmarking
Compare processing speed and optimization efficiency
- Processing time comparisons
- Optimization speed analysis
- Throughput measurements
- Resource utilization tracking
Cost Benchmarking
Analyze cost efficiency across models and configurations
- Cost per optimization
- Model cost comparisons
- ROI analysis across projects
- Budget efficiency tracking
Quality Benchmarking
Measure optimization quality and accuracy
- Token reduction accuracy
- Semantic preservation
- Optimization consistency
- Error rate analysis
Model Performance Comparison
Latest benchmark results across supported AI models
| Model | Processing Time (s) | Cost per Optimization | Token Reduction (%) | Accuracy Score | Throughput (ops/s) |
|---|---|---|---|---|---|
| GPT-4o | 1.2s | $0.0034 | 68.1% | 96.8% | 847 |
| Claude-3.5-Sonnet | 1.8s | $0.0052 | 71.3% | 98.2% | 563 |
| GPT-4 | 2.1s | $0.0045 | 64.9% | 94.7% | 478 |
| GPT-3.5-Turbo | 0.8s | $0.0012 | 62.4% | 91.3% | 1256 |
Configuration Performance Comparison
Basic Optimization
Simple forms and basic interactions
Advanced Optimization
Complex forms with validation rules
Premium Optimization
Enterprise applications with complex workflows
Industry Benchmarks
Performance benchmarks across different industries and use cases
E-commerce
Common Use Cases:
- Checkout forms
- Product search
- Customer support
Best Practices:
- Focus on checkout flow optimization
- Prioritize mobile form experiences
- Implement progressive enhancement
Financial Services
Common Use Cases:
- KYC forms
- Loan applications
- Account management
Best Practices:
- Emphasize security and compliance
- Optimize complex multi-step forms
- Focus on accessibility standards
Healthcare
Common Use Cases:
- Patient intake
- Insurance forms
- Appointment booking
Best Practices:
- Ensure HIPAA compliance
- Optimize for elderly user interfaces
- Minimize form completion friction
SaaS
Common Use Cases:
- User onboarding
- Settings panels
- Feature forms
Best Practices:
- Streamline onboarding flows
- Optimize settings interfaces
- Focus on user engagement metrics
Implementation Examples
Practical examples for implementing benchmarking in your applications
Basic Performance Benchmarking
Set up performance benchmarking for your webMCP implementations
JavaScriptimport { WebMCPProcessor, BenchmarkRunner } from '@webmcp/core';
class WebMCPBenchmark {
constructor() {
this.benchmarkRunner = new BenchmarkRunner({
iterations: 100,
warmupRuns: 10,
includeMemoryMetrics: true,
includeTokenMetrics: true
});
this.models = [
'gpt-4o',
'claude-3.5-sonnet',
'gpt-4',
'gpt-3.5-turbo'
];
}
async runPerformanceBenchmark(htmlSamples) {
const results = [];
for (const model of this.models) {
console.log(`Benchmarking ${model}...`);
const processor = new WebMCPProcessor({
targetModel: model,
compressionLevel: 'advanced'
});
const modelResults = await this.benchmarkRunner.run({
name: `${model}_performance`,
processor,
testCases: htmlSamples,
metrics: ['processingTime', 'tokenReduction', 'memoryUsage', 'cost']
});
results.push({
model,
...modelResults.summary
});
}
return this.analyzeResults(results);
}
analyzeResults(results) {
// Calculate relative performance
const baselineSpeed = Math.min(...results.map(r => r.avgProcessingTime));
const baselineCost = Math.min(...results.map(r => r.avgCost));
return results.map(result => ({
...result,
speedRatio: result.avgProcessingTime / baselineSpeed,
costRatio: result.avgCost / baselineCost,
efficiencyScore: this.calculateEfficiencyScore(result),
ranking: 0 // Will be calculated after sorting
})).sort((a, b) => b.efficiencyScore - a.efficiencyScore)
.map((result, index) => ({ ...result, ranking: index + 1 }));
}
calculateEfficiencyScore(result) {
// Weighted efficiency score
const weights = {
tokenReduction: 0.4,
processingTime: 0.3,
cost: 0.2,
accuracy: 0.1
};
return (
(result.avgTokenReduction * weights.tokenReduction) +
((1 / result.avgProcessingTime) * 100 * weights.processingTime) +
((1 / result.avgCost) * weights.cost) +
(result.accuracyScore * weights.accuracy)
);
}
generateReport(results) {
const report = {
timestamp: new Date().toISOString(),
summary: {
modelsCompared: results.length,
bestPerformingModel: results[0].model,
avgTokenReduction: results.reduce((sum, r) => sum + r.avgTokenReduction, 0) / results.length,
avgProcessingTime: results.reduce((sum, r) => sum + r.avgProcessingTime, 0) / results.length
},
detailed: results,
recommendations: this.generateRecommendations(results)
};
return report;
}
generateRecommendations(results) {
const recommendations = [];
const best = results[0];
const fastest = results.sort((a, b) => a.avgProcessingTime - b.avgProcessingTime)[0];
const cheapest = results.sort((a, b) => a.avgCost - b.avgCost)[0];
recommendations.push({
type: 'overall_best',
message: `${best.model} provides the best overall efficiency with a score of ${best.efficiencyScore.toFixed(1)}`,
model: best.model
});
if (fastest.model !== best.model) {
recommendations.push({
type: 'fastest_processing',
message: `${fastest.model} offers the fastest processing at ${fastest.avgProcessingTime.toFixed(2)}s average`,
model: fastest.model,
useCase: 'High-throughput applications requiring minimal latency'
});
}
if (cheapest.model !== best.model) {
recommendations.push({
type: 'most_cost_effective',
message: `${cheapest.model} provides the lowest cost at $${cheapest.avgCost.toFixed(4)} per optimization`,
model: cheapest.model,
useCase: 'Budget-conscious applications with high volume'
});
}
return recommendations;
}
}
// Usage example
const benchmark = new WebMCPBenchmark();
// Sample HTML test cases
const htmlSamples = [
`<form><input name="email" type="email"><button>Submit</button></form>`,
`<form><input name="name"><input name="phone"><select name="country"><option>US</option></select><button>Save</button></form>`,
// Add more test cases...
];
// Run benchmark
benchmark.runPerformanceBenchmark(htmlSamples)
.then(results => {
const report = benchmark.generateReport(results);
console.log('Benchmark Report:', report);
// Export results
fs.writeFileSync('benchmark_results.json', JSON.stringify(report, null, 2));
})
.catch(console.error);A/B Testing Framework
Compare different optimization configurations
JavaScriptclass WebMCPABTest {
constructor() {
this.experiments = new Map();
this.results = [];
}
// Define A/B test experiment
defineExperiment(name, configurations) {
this.experiments.set(name, {
name,
configurations,
status: 'defined',
startTime: null,
endTime: null,
results: []
});
}
// Run A/B test
async runExperiment(experimentName, testData, options = {}) {
const experiment = this.experiments.get(experimentName);
if (!experiment) {
throw new Error(`Experiment ${experimentName} not found`);
}
const {
sampleSize = 100,
confidenceLevel = 0.95,
trafficSplit = 'equal' // equal, weighted, or custom array
} = options;
experiment.status = 'running';
experiment.startTime = Date.now();
console.log(`Starting A/B test: ${experimentName}`);
const results = await this.executeVariants(
experiment.configurations,
testData,
sampleSize,
trafficSplit
);
experiment.results = results;
experiment.endTime = Date.now();
experiment.status = 'completed';
const analysis = this.analyzeExperiment(experiment);
this.results.push(analysis);
return analysis;
}
async executeVariants(configurations, testData, sampleSize, trafficSplit) {
const variantSizes = this.calculateTrafficSplit(configurations.length, sampleSize, trafficSplit);
const results = [];
for (let i = 0; i < configurations.length; i++) {
const config = configurations[i];
const variantSize = variantSizes[i];
console.log(`Testing variant ${config.name} with ${variantSize} samples...`);
const processor = new WebMCPProcessor(config.settings);
const variantResults = [];
// Run tests for this variant
for (let j = 0; j < variantSize; j++) {
const testCase = testData[j % testData.length];
const startTime = Date.now();
try {
const result = await processor.parseWebMCP(testCase.html);
const endTime = Date.now();
variantResults.push({
processingTime: endTime - startTime,
tokenReduction: result.tokenReduction,
cost: result.costAnalysis?.optimizedCost || 0,
accuracy: this.calculateAccuracy(result, testCase.expected),
success: true
});
} catch (error) {
variantResults.push({
processingTime: 0,
tokenReduction: 0,
cost: 0,
accuracy: 0,
success: false,
error: error.message
});
}
}
// Calculate variant statistics
const successfulResults = variantResults.filter(r => r.success);
const variantStats = {
name: config.name,
configuration: config.settings,
sampleSize: variantSize,
successRate: (successfulResults.length / variantSize) * 100,
avgProcessingTime: this.calculateMean(successfulResults.map(r => r.processingTime)),
avgTokenReduction: this.calculateMean(successfulResults.map(r => r.tokenReduction)),
avgCost: this.calculateMean(successfulResults.map(r => r.cost)),
avgAccuracy: this.calculateMean(successfulResults.map(r => r.accuracy)),
stdDevProcessingTime: this.calculateStdDev(successfulResults.map(r => r.processingTime)),
rawResults: variantResults
};
results.push(variantStats);
}
return results;
}
analyzeExperiment(experiment) {
const { results } = experiment;
// Statistical significance testing
const significanceTests = this.performSignificanceTests(results);
// Determine winner
const winner = this.determineWinner(results, significanceTests);
// Calculate confidence intervals
const confidenceIntervals = results.map(r => ({
name: r.name,
tokenReduction: this.calculateConfidenceInterval(
r.rawResults.map(x => x.tokenReduction).filter(x => x > 0),
0.95
),
processingTime: this.calculateConfidenceInterval(
r.rawResults.map(x => x.processingTime).filter(x => x > 0),
0.95
)
}));
return {
experimentName: experiment.name,
duration: experiment.endTime - experiment.startTime,
variants: results,
significanceTests,
winner,
confidenceIntervals,
recommendations: this.generateABRecommendations(results, winner, significanceTests)
};
}
performSignificanceTests(results) {
const tests = [];
// Compare each variant with the control (first variant)
const control = results[0];
for (let i = 1; i < results.length; i++) {
const variant = results[i];
// T-test for token reduction
const tokenReductionTest = this.tTest(
control.rawResults.map(r => r.tokenReduction),
variant.rawResults.map(r => r.tokenReduction)
);
// T-test for processing time
const processingTimeTest = this.tTest(
control.rawResults.map(r => r.processingTime),
variant.rawResults.map(r => r.processingTime)
);
tests.push({
comparison: `${control.name} vs ${variant.name}`,
tokenReduction: {
pValue: tokenReductionTest.pValue,
significant: tokenReductionTest.pValue < 0.05,
improvement: variant.avgTokenReduction - control.avgTokenReduction
},
processingTime: {
pValue: processingTimeTest.pValue,
significant: processingTimeTest.pValue < 0.05,
improvement: control.avgProcessingTime - variant.avgProcessingTime // Lower is better
}
});
}
return tests;
}
determineWinner(results, significanceTests) {
// Calculate composite score for each variant
const scores = results.map(result => ({
name: result.name,
score: this.calculateCompositeScore(result),
result
}));
scores.sort((a, b) => b.score - a.score);
const winner = scores[0];
const runnerUp = scores[1];
// Check if winner is statistically significant
const relevantTest = significanceTests.find(test =>
test.comparison.includes(winner.name)
);
return {
variant: winner.name,
score: winner.score,
statisticallySignificant: relevantTest?.tokenReduction.significant || false,
marginOfVictory: winner.score - runnerUp.score,
confidence: relevantTest ? (1 - relevantTest.tokenReduction.pValue) * 100 : 0
};
}
calculateCompositeScore(result) {
// Weighted composite score
return (
result.avgTokenReduction * 0.4 +
(100 - result.avgProcessingTime) * 0.3 + // Lower processing time is better
(1 / result.avgCost) * 0.2 +
result.avgAccuracy * 0.1
);
}
// Helper methods for statistical calculations
calculateMean(values) {
return values.reduce((sum, val) => sum + val, 0) / values.length;
}
calculateStdDev(values) {
const mean = this.calculateMean(values);
const squaredDiffs = values.map(val => Math.pow(val - mean, 2));
return Math.sqrt(this.calculateMean(squaredDiffs));
}
tTest(sample1, sample2) {
// Simplified t-test implementation
const mean1 = this.calculateMean(sample1);
const mean2 = this.calculateMean(sample2);
const var1 = this.calculateStdDev(sample1) ** 2;
const var2 = this.calculateStdDev(sample2) ** 2;
const n1 = sample1.length;
const n2 = sample2.length;
const tStat = (mean1 - mean2) / Math.sqrt(var1/n1 + var2/n2);
const df = n1 + n2 - 2;
// Simplified p-value calculation (normally would use t-distribution)
const pValue = 2 * (1 - this.normalCDF(Math.abs(tStat)));
return { tStat, pValue, df };
}
normalCDF(x) {
// Approximation of normal CDF
return 0.5 * (1 + Math.sign(x) * Math.sqrt(1 - Math.exp(-2 * x * x / Math.PI)));
}
}
// Usage example
const abTest = new WebMCPABTest();
// Define experiment
abTest.defineExperiment('optimization_levels', [
{
name: 'control_basic',
settings: { compressionLevel: 'basic', targetModel: 'gpt-3.5-turbo' }
},
{
name: 'variant_advanced',
settings: { compressionLevel: 'advanced', targetModel: 'gpt-4o' }
},
{
name: 'variant_premium',
settings: { compressionLevel: 'premium', targetModel: 'claude-3.5-sonnet' }
}
]);
// Run experiment
const testData = [
{ html: '<form>...</form>', expected: { tokenCount: 100 } },
// More test cases...
];
abTest.runExperiment('optimization_levels', testData, {
sampleSize: 300,
confidenceLevel: 0.95
}).then(results => {
console.log('A/B Test Results:', results);
console.log('Winner:', results.winner.variant);
console.log('Statistical Significance:', results.winner.statisticallySignificant);
});Python Benchmarking Suite
Comprehensive benchmarking toolkit for Python applications
Pythonimport time
import statistics
import pandas as pd
import numpy as np
from scipy import stats
from webmcp_core import WebMCPProcessor
from typing import List, Dict, Any
import matplotlib.pyplot as plt
import seaborn as sns
class WebMCPBenchmarkSuite:
def __init__(self, models: List[str] = None):
self.models = models or ['gpt-4o', 'claude-3.5-sonnet', 'gpt-4', 'gpt-3.5-turbo']
self.results = []
self.processors = {}
# Initialize processors
for model in self.models:
self.processors[model] = WebMCPProcessor(target_model=model)
def run_performance_benchmark(self, test_cases: List[str], iterations: int = 50) -> Dict:
"""Run comprehensive performance benchmark"""
results = {}
for model in self.models:
print(f"Benchmarking {model}...")
model_results = []
processor = self.processors[model]
for i in range(iterations):
for test_case in test_cases:
start_time = time.time()
try:
result = processor.parse_webmcp(test_case)
end_time = time.time()
model_results.append({
'model': model,
'iteration': i,
'test_case_id': test_cases.index(test_case),
'processing_time': end_time - start_time,
'token_reduction': result.token_reduction,
'original_tokens': result.original_tokens,
'optimized_tokens': result.optimized_tokens,
'cost': result.cost_analysis.optimized_cost if hasattr(result, 'cost_analysis') else 0,
'success': True
})
except Exception as e:
model_results.append({
'model': model,
'iteration': i,
'test_case_id': test_cases.index(test_case),
'processing_time': 0,
'token_reduction': 0,
'original_tokens': 0,
'optimized_tokens': 0,
'cost': 0,
'success': False,
'error': str(e)
})
results[model] = model_results
return self.analyze_results(results)
def analyze_results(self, raw_results: Dict) -> Dict:
"""Analyze benchmark results and generate statistics"""
analysis = {}
for model, results in raw_results.items():
df = pd.DataFrame(results)
successful_results = df[df['success'] == True]
if len(successful_results) == 0:
analysis[model] = {'error': 'No successful results'}
continue
analysis[model] = {
'success_rate': len(successful_results) / len(results) * 100,
'processing_time': {
'mean': successful_results['processing_time'].mean(),
'median': successful_results['processing_time'].median(),
'std': successful_results['processing_time'].std(),
'min': successful_results['processing_time'].min(),
'max': successful_results['processing_time'].max(),
'p95': successful_results['processing_time'].quantile(0.95)
},
'token_reduction': {
'mean': successful_results['token_reduction'].mean(),
'median': successful_results['token_reduction'].median(),
'std': successful_results['token_reduction'].std(),
'min': successful_results['token_reduction'].min(),
'max': successful_results['token_reduction'].max()
},
'cost': {
'mean': successful_results['cost'].mean(),
'median': successful_results['cost'].median(),
'total': successful_results['cost'].sum()
},
'throughput': len(successful_results) / successful_results['processing_time'].sum(),
'raw_data': results
}
return analysis
def compare_models(self, analysis: Dict) -> Dict:
"""Compare models and perform statistical tests"""
comparisons = {}
model_names = list(analysis.keys())
for i in range(len(model_names)):
for j in range(i + 1, len(model_names)):
model_a = model_names[i]
model_b = model_names[j]
if 'error' in analysis[model_a] or 'error' in analysis[model_b]:
continue
# Get raw data for statistical tests
data_a = [r for r in analysis[model_a]['raw_data'] if r['success']]
data_b = [r for r in analysis[model_b]['raw_data'] if r['success']]
processing_times_a = [r['processing_time'] for r in data_a]
processing_times_b = [r['processing_time'] for r in data_b]
token_reductions_a = [r['token_reduction'] for r in data_a]
token_reductions_b = [r['token_reduction'] for r in data_b]
# Perform t-tests
processing_time_test = stats.ttest_ind(processing_times_a, processing_times_b)
token_reduction_test = stats.ttest_ind(token_reductions_a, token_reductions_b)
comparisons[f"{model_a}_vs_{model_b}"] = {
'processing_time': {
'mean_difference': statistics.mean(processing_times_a) - statistics.mean(processing_times_b),
'p_value': processing_time_test.pvalue,
'significant': processing_time_test.pvalue < 0.05,
'winner': model_a if statistics.mean(processing_times_a) < statistics.mean(processing_times_b) else model_b
},
'token_reduction': {
'mean_difference': statistics.mean(token_reductions_a) - statistics.mean(token_reductions_b),
'p_value': token_reduction_test.pvalue,
'significant': token_reduction_test.pvalue < 0.05,
'winner': model_a if statistics.mean(token_reductions_a) > statistics.mean(token_reductions_b) else model_b
}
}
return comparisons
def generate_visualizations(self, analysis: Dict, output_dir: str = './benchmark_plots'):
"""Generate benchmark visualization plots"""
import os
os.makedirs(output_dir, exist_ok=True)
# Prepare data for plotting
plot_data = []
for model, data in analysis.items():
if 'error' not in data:
plot_data.append({
'model': model,
'avg_processing_time': data['processing_time']['mean'],
'avg_token_reduction': data['token_reduction']['mean'],
'avg_cost': data['cost']['mean'],
'throughput': data['throughput'],
'success_rate': data['success_rate']
})
df = pd.DataFrame(plot_data)
# Processing Time Comparison
plt.figure(figsize=(10, 6))
sns.barplot(data=df, x='model', y='avg_processing_time')
plt.title('Average Processing Time by Model')
plt.ylabel('Processing Time (seconds)')
plt.xticks(rotation=45)
plt.tight_layout()
plt.savefig(f'{output_dir}/processing_time_comparison.png')
plt.close()
# Token Reduction Comparison
plt.figure(figsize=(10, 6))
sns.barplot(data=df, x='model', y='avg_token_reduction')
plt.title('Average Token Reduction by Model')
plt.ylabel('Token Reduction (%)')
plt.xticks(rotation=45)
plt.tight_layout()
plt.savefig(f'{output_dir}/token_reduction_comparison.png')
plt.close()
# Cost vs Performance Scatter Plot
plt.figure(figsize=(10, 8))
scatter = plt.scatter(df['avg_cost'], df['avg_token_reduction'],
s=df['throughput']*10, alpha=0.7)
for i, model in enumerate(df['model']):
plt.annotate(model, (df.iloc[i]['avg_cost'], df.iloc[i]['avg_token_reduction']))
plt.xlabel('Average Cost per Optimization')
plt.ylabel('Average Token Reduction (%)')
plt.title('Cost vs Performance (bubble size = throughput)')
plt.tight_layout()
plt.savefig(f'{output_dir}/cost_vs_performance.png')
plt.close()
# Multi-metric Radar Chart
fig, ax = plt.subplots(figsize=(10, 10), subplot_kw=dict(projection='polar'))
metrics = ['avg_processing_time', 'avg_token_reduction', 'avg_cost', 'throughput', 'success_rate']
angles = np.linspace(0, 2 * np.pi, len(metrics), endpoint=False).tolist()
angles += angles[:1] # Complete the circle
for _, row in df.iterrows():
values = []
for metric in metrics:
# Normalize values to 0-100 scale
if metric == 'avg_processing_time' or metric == 'avg_cost':
# Lower is better, so invert
normalized = 100 - (row[metric] / df[metric].max() * 100)
else:
normalized = row[metric] / df[metric].max() * 100
values.append(normalized)
values += values[:1] # Complete the circle
ax.plot(angles, values, 'o-', linewidth=2, label=row['model'])
ax.fill(angles, values, alpha=0.25)
ax.set_xticks(angles[:-1])
ax.set_xticklabels(metrics)
ax.set_ylim(0, 100)
plt.legend(loc='upper right', bbox_to_anchor=(0.1, 0.1))
plt.title('Multi-Metric Performance Comparison')
plt.tight_layout()
plt.savefig(f'{output_dir}/radar_comparison.png')
plt.close()
print(f"Visualizations saved to {output_dir}")
def export_results(self, analysis: Dict, comparisons: Dict, filename: str = 'benchmark_results.xlsx'):
"""Export results to Excel file"""
with pd.ExcelWriter(filename) as writer:
# Summary sheet
summary_data = []
for model, data in analysis.items():
if 'error' not in data:
summary_data.append({
'Model': model,
'Success Rate (%)': data['success_rate'],
'Avg Processing Time (s)': data['processing_time']['mean'],
'Avg Token Reduction (%)': data['token_reduction']['mean'],
'Avg Cost': data['cost']['mean'],
'Throughput (ops/s)': data['throughput']
})
summary_df = pd.DataFrame(summary_data)
summary_df.to_excel(writer, sheet_name='Summary', index=False)
# Detailed results for each model
for model, data in analysis.items():
if 'error' not in data:
detailed_df = pd.DataFrame(data['raw_data'])
detailed_df.to_excel(writer, sheet_name=f'{model}_detailed', index=False)
# Comparisons sheet
comparison_data = []
for comparison, data in comparisons.items():
comparison_data.append({
'Comparison': comparison,
'Processing Time Winner': data['processing_time']['winner'],
'Processing Time P-Value': data['processing_time']['p_value'],
'Processing Time Significant': data['processing_time']['significant'],
'Token Reduction Winner': data['token_reduction']['winner'],
'Token Reduction P-Value': data['token_reduction']['p_value'],
'Token Reduction Significant': data['token_reduction']['significant']
})
comparison_df = pd.DataFrame(comparison_data)
comparison_df.to_excel(writer, sheet_name='Statistical_Comparisons', index=False)
print(f"Results exported to {filename}")
# Usage example
benchmark_suite = WebMCPBenchmarkSuite()
# Test cases
test_cases = [
'<form><input name="email" type="email"><button>Submit</button></form>',
'<form><input name="name"><input name="phone"><select name="country"><option>US</option></select><button>Save</button></form>',
# Add more complex test cases...
]
# Run benchmark
analysis = benchmark_suite.run_performance_benchmark(test_cases, iterations=100)
comparisons = benchmark_suite.compare_models(analysis)
# Generate visualizations
benchmark_suite.generate_visualizations(analysis)
# Export results
benchmark_suite.export_results(analysis, comparisons)
print("Benchmark complete! Check the generated files for detailed results.")Benchmarking Best Practices
Guidelines for conducting reliable and meaningful benchmarks
Benchmark Design
Use Representative Test Cases
Select test cases that represent your actual use cases
Sufficient Sample Size
Use adequate sample sizes for statistical significance
Control for Variables
Isolate variables to ensure fair comparisons
Performance Metrics
Multiple Metrics
Track multiple performance dimensions
Percentile Analysis
Look beyond averages to understand distribution
Baseline Comparisons
Always compare against established baselines
Statistical Rigor
Statistical Significance
Use proper statistical tests for comparisons
Confidence Intervals
Report confidence intervals with point estimates
Multiple Comparisons
Adjust for multiple comparison bias
Optimize with Confidence
Use comprehensive benchmarking to make data-driven optimization decisions